Part Number Hot Search : 
TLOE20T GBU405 68HC11E0 A2411 10203 621KD10 SY89429A 28F01
Product Description
Full Text Search
 

To Download TA1317AFG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TA1317AFG
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA1317AFG
Deflection Processor IC for TV
TA1317AFG is a deflection processor IC for a large and wide picture tube. TA1317AFG incorporates an EW, a vertical distortion correction circuit and a dynamic focus correction circuit. It can control various functions via I2C BUS line.
Features
* * * * * * * * * * * * * * * * * * * * * Vertical drive (AC/DC-coupling) Picture height adjustment Vertical shift adjustment Vertical symmetry correction Vertical linearity correction Vertical S correction Vertical integral correction Vertical/Horizontal EHT compensation EW drive (parabola/PWM output) Picture width EW trapezium correction EW parabola correction EW corner correction (top only/bottom only/top&bottom) EW S correction Center curve correction (SAW/PAR) Parabola output for horizontal and vertical dynamic focus (H/V output independently) Horizontal and vertical dynamic focus phase adjustment Horizontal and vertical dynamic focus amplitude adjustment Horizontal dynamic focus curve characteristic adjustment V-ramp limiter circuit Analog blanking output Weight: 0.63 g (typ.)
1
2005-08-18
TA1317AFG
Block Diagram
V-RAMP FILTER
CENTER OUT
AGC FILTER
DIGITAL GND
TC FILTER
H-DF OUT
V-DF OUT
BLK OUT
LVP IN
VIN
30
29
28 Pulse Gene
27
NC
26
25
24 Analog BLK
23 Center Out +
22
21 LVP Detect Center SAW
20 V-DF Out V-DF Amp VI
19
18
17
AGC
V-Ramp
I bus Decoder H-DF Out V-DF Phase EW Corner
2
V Symmetry V Linearity
VI V-S Correction V- Correction + + V Amp
Center Parabola
VI EW Trapezium + H-DF Phase EW Amp H EHT V Guard Detect EW Width H-DF Bathtub H-Ramp VI EW-S Correction
V EHT V-Ramp Limiter DAC V Phase
Band-Gap 1 VREF 2 CENTER DAC 3 EHT IN 4 NC 5 V DRIVE 6 V-DC REF 7 V NF 8 VCC 9 NC
EW PWM 10 EW PWM 11 ANALOG GND 12 NC 13 EW FD 14 EW FILTER 15 FBP IN
2
SDA 16
SCL
NC
NC
2005-08-18
TA1317AFG
Pin Functions
Pin No. Pin Name Function Interface Circuit Input/Output Signal
8 Internal reference voltage adjustment pin. If the CRT DY has a temperature coefficient, it can be cancelled in the TV by applying the inverse temperature coefficient to this pin. In case of not using it, connect a 0.01 F capacitor between this pin and GND. 1 k 10 k 10.3 k
1
VREF
1
40 k
1 k
11
8 DAC output pin. When bus write function VD = 0, 2 bit DAC output; VD = 1, 7 bit DAC output. In case of not used, it should be open. 50
2
CENTER DAC
2 5 k
DC
11
8 EHT input pin. In case of not using it, connect a 0.01 F capacitor between this pin and GND.
3
EHT IN
3
10 k
4
NC
This pin is not used. Connect to GND.
4.5 V
11 k
DC
11
8
5
V DRIVE
Vertical output pin
5
100
30 k 4.5 k
11
3
2005-08-18
TA1317AFG
Pin No. Pin Name Function Interface Circuit Input/Output Signal
8 1 k 6 V-DC REF DC reference voltage output pin when V is DC coupling. In case of not used, it should be open. 6 5 k
30 k
DC
40 k 11
7
V NF
Vertical negative feedback input pin. When VD = 0, if pin is 1.2 V (typ.) or below, or 3.7 V (typ.) or higher, returns abnormal detection result to BUS read function (V guard), forcibly setting pin 24 to High. When VD = 1, if pin is 2.4 V (typ.) or below, or 7.4 V (typ.) or higher, abnormality is detected. VCC pin. Connect 9 V (typ.). This pin is not used. Connect to GND.
8 7 12.5 k
50
11
8 9
VCC NC


8 EW D drive (PWM) output pin. Open collector output. In case of not used, it should be open. 10
10
EW PWM
11
11 12
ANALOG GND NC
GND pin for analog block This pin is not used. Connect to GND.


8
13
EW FD
EW feedback pin
13
60 k
11
4
2005-08-18
TA1317AFG
Pin No. Pin Name Function Interface Circuit Input/Output Signal
8
14
EW FILTER
Connect phase compensation filter for EW output. the EW parabola waveform can be extracted from this pin.
14
100 100 500
11
8
15
FBP IN
2.25 V
FBP input pin. In case of H-DF and EW-PWM outputs are not used, it should be open.
15
500
Th: 2.25 V Input frequency: 28 k~45 kHz
5.0 V
11 18
8
16
ACK 18
17
18 19
DIGITAL GND NC
GND pin for digital block This pin is not used. Connect to GND.

3V
17
SCL
SCL pin for I2C bus
3V
16
SDA
SDA pin for I2C bus
50 20 k
SDA
Th: 2.25 V
8
20 k
SCL
Th: 2.25 V
18
5
2005-08-18
TA1317AFG
Pin No. Pin Name Function Interface Circuit Input/Output Signal
8 Outputs parabola waveform for horizontal dynamic focus. Mask the pulse in horizontal blanking if it is not needed. In case of not used, it should be open. 100
H-BLK 20 1 k 22.5 k 200
20
H-DF OUT
11 18
H-DF OUT
21
LVP IN
LVP detection pin. Connect reference voltage used to protect deflection circuit against low supply voltage. If this pin is 5.0 V (typ.) or below, returns abnormal detection result to bus read function. In case of LVP detection is not used, it should be open.
8 3 k DC 5V 11 8 22 100 1 mA 2 k 11 8 100
21
22
V-DF OUT
Outputs parabola waveform for vertical dynamic focus. In case of not used, it should be open.
23
CENTER OUT
22.5 k
Outputs center curve correction waveform. Connect this pin to curve correction input pin of horizontal sync IC. In case of not used, it should be open.
or 23 1 k
11
or composite of above two waveforms
6
2005-08-18
TA1317AFG
Pin No. Pin Name Function Interface Circuit Input/Output Signal
8 200 24 1 k Analog blanking output pin. Open collector output. In case of not used, it should be open. 200
24
BLK OUT
11
25
NC
This pin is not used. Connect to GND.
8
26
VIN
Inputs vertical trigger pulse. Notifies subsequent circuit of input fall as trigger.
26
2 k
Th: 1.5 V
11
27
NC
This pin is not used. Connect to GND.
8
28
TC FILTER
Connects filter for generating internal pulse.
28
100 10 k
11
8 1 k
29 Connects filter for generating vertical ramp signal.
29
V-RAMP FILTER
100
1 k
11
7
2005-08-18
TA1317AFG
Pin No. Pin Name Function Interface Circuit Input/Output Signal
8 Connects filter used to automatically adjust oscillation amplitude of vertical ramp signal. Can switch AGC sensitivity by BUS write function. 500 500
30
AGC FILTER
30 2.25 V
1 k
3.2 V
11
8
2005-08-18
TA1317AFG
Bus Control Map
Write Mode
Slave Address: 8CH (10001100)
Sub-Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 D7 MSB D6 D5 D4 D3 D2 D1 D0 LSB Preset MSB LSB 1000 1000 1000 1000 1000 0000 0000 0000 0000 0000 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000
PICTURE HEIGHT PICTURE WIDTH1 V LINEARITY ANALOG V-BLK STOP PHASE ANALOG V-BLK START PHASE V CENTERING V-DF PHASE H-DF PHASE H-DF CURVE V AGC * * EW TRAPEZIUM EW TOP CORNER EW BOTTOM CORNER EW S CORRECTION EW CORNER CENTER PARABOLA V SYMMETRY * * * * CENTER SAW * * * * V-DF AMPLITUDE H-DF AMPLITUDE V INTEGRAL CORRECTION V S CORRECTION EW PARABOLA V SHIFT V-EHT COMPENSATION H-EHT COMPENSATION V-RAMP LIMIT2
VD
V-RAMP LIMIT1
1000 1000 1000 1000 1000 1000
V STOP
PICTURE WIDTH2
1000 1000 1000 1000 1000 1000 0000
* * *
Read Mode
Slave Address: 8DH (10001101)
D7 MSB 0 V DF D6 H DF D5 LVP D4 V NF D3 V GUARD D2 EW OUT D1 V OUT D0 LSB POR
9
2005-08-18
TA1317AFG
Bus Control Function
Write Mode
Register Name/Number of Bits
PICTURE HEIGHT/7
Function Explanation
Adjusts the picture height. 0000000: min 1000000: center 1111111: max
Output Change
Picture Change
Preset
Solid line
Dashed line
center (1000000)
Pin 7
VD/1
Changes V-DRIVE mode 0: DC-coupling 1: AC-coupling
DC-coupling (0)
PICTURE WIDTH/7
Adjusts the picture width. 0000000: max 1000000: center 1111111: min Solid line Dashed line center (1000000) Pin 14
Sub-address 0C-D0 bit comes LSB.
V SHIFT/2
Where VD = 0, sets DAC output level of pin 2 is set. Where VD = 1, sets DC level of V-DRIVE is adjusted. 00: min 11: max Pin 7 (VD = 1)
Solid line
Dashed line min (00) VD = 1
V LINEARITY/5
Corrects the vertical linearity. 00000: min 10000: center 11111: max Solid line Pin 7 Dashed line center (10000)
10
2005-08-18
TA1317AFG
Register Name/Number of Bits
V-EHT COMPENSATION/3
Function Explanation
Adjusts the compensated rate for the V-DRIVE by EHT-IN (pin 3). 000: min 111: max
Output Change
Picture Change
Preset
Solid line Pin 7
Dashed line
min (000)
ANALOG V-BLK STOP PHASE/5
Sets the analog blanking stop phase on pin 24. Inputs the output from pin 20 to an external BLK-IN of synchronization IC. 00000: min 10000: center 11111: max
Solid line
Dashed line
center (10000)
H-EHT COMPENSATION/3
Adjusts the compensated rate for the EW output by EHT-IN (pin 3). 000: min 111: max Pin 14
Solid line
Dashed line
min (000)
ANALOG V-BLK START PHASE/5
Sets the analog blanking start phase on pin 24. Inputs the output from pin 24 to external BLK-IN of synchronization IC. 00000: min 10000: center 11111: max
Solid line
Dashed line
center (10000)
V-RAMP LIMIT LEVEL/4
Sets the V-ramp slice level. 0000: OFF 0001: min 1111: max Pin 7 OFF (0000)
Sub-address 05-D0 bit comes MSB.
11
2005-08-18
TA1317AFG
Register Name/Number of Bits
V CENTERING/7
Function Explanation
Where VD = 0, DC level of V-DRIVE is adjusted. Where VD = 1, DAC output level of pin 2 is set. 0000000: min 1000000: center 1111111: max
Output Change
Picture Change
Preset
Solid line
Dashed line min
Pin 7(VD = 0) VD = 0
(0000000)
V-DF PHASE/4
Adjusts the phase of the vertical dynamic focus output. 0000: min 1000: center 1111: max Pin 22 center (1000)
V-DF AMPLITUDE/4
Adjusts the amplitude of the vertical dynamic focus output. 0000: min 1000: center 1111: max Pin 22 center (1000)
H-DF PHASE/4
Adjusts the phase of the horizontal dynamic focus output. 0000: min 1000: center 1111: max Pin 20 center (1000)
12
2005-08-18
TA1317AFG
Register Name/Number of Bits
H-DF AMPLITUDE/4
Function Explanation
Adjusts the amplitude of the horizontal dynamic focus output. 0000: min 1000: center 1111: max
Output Change
Picture Change
Preset
Pin 20
center (1000)
H-DF CURVE/4
Adjusts the curve characteristic of the horizontal dynamic focus output. 0000: max 1111: min Pin 20 max (0000)
V INTEGRAL CORRECTION/4
Adjusts the vertical integral correction. 0000: min 1111: max Solid line Dashed line min (0000) Pin 7
V AGC/2
Sets the AGC gain for V-ramp. 00: LOW 11: HIGH
LOW (00)
V S CORRECTION/6
Adjusts the vertical S correction. 000000: min 100000: center 111111: max Pin 7 Solid line Dashed line min (000000)
EW PARABOLA/6
Adjusts the amplitude of the EW output. 000000: min 111111: max Solid line Dashed line min (000000) Pin 14
13
2005-08-18
TA1317AFG
Register Name/Number of Bits
EW TRAPEZIUM/7
Function Explanation
Adjusts the EW trapezium correction. 0000000: min 1000000: center 1111111: max
Output Change
Picture Change
Preset
Solid line
Dashed line
center (1000000)
Note: When this data is changed, V symmetry characteristic will be also changed. V STOP/1 Switches over the V-stop mode. 0: Normal 1: V stop/BLK stop
Pin 14
Pin 7
Normal (0)
EW TOP CORNER/5
Adjusts the EW top corner correction. 00000: max 10000: center 11111: min Solid line Dashed line center (10000) Pin 14
EW BOTTOM CORNER/5
Adjusts the EW bottom corner correction. 00000: max 10000: center 11111: min Solid line Dashed line center (10000) Pin 14
EW S CORRECTION/5
Adjusts the EW S correction. 00000: max 10000: center 11111: min Solid line Dashed line center (10000) Pin 14
14
2005-08-18
TA1317AFG
Register Name/Number of Bits
EW CORNER/5
Function Explanation
Adjusts the EW corner correction. 00000: max 10000: center 11111: min
Output Change
Picture Change
Preset
Solid line
Dashed line center (10000)
Pin 14
CENTER PARABOLA/4
Adjusts the parabola-component amplitude. 0000: max 1000: center 1111: min Pin 23 Solid line Dashed line center (1000)
CENTER SAW/4
Adjusts the saw-component amplitude. 0000: min 1000: center 1111: max Pin 23 Solid line Dashed line center (1000)
V SYMMETRY/8
Corrects the vertical symmetry. 00000000: min 10000000: center 11111111: max Solid line Pin 7 Dashed line center (10000000)
Note: When this data is changed, EW trapezium characteristic will be also changed.
15
2005-08-18
TA1317AFG
Read Mode
Register Name/Number of Bits V DF/1 Function Explanation Vertical dynamic focus output self-check. 0: NG (no) H DF/1 1: OK (yes)
Horizontal dynamic focus output self-check. 0: NG (no) 1: OK (yes)
LVP/1
LVP (low voltage protection) is detected. 0: OFF (pin 21 is high) 1: ON (pin 21 is low)
V NF/1
V-NF input self-check. 0: NG (no) 1: OK (yes)
V GUARD/1
Detects abnormality on V-NF input. If abnormal, Pin 20 goes high. 0: OFF (normal) 1: ON (abnormal)
EW OUT/1
EW output self-check. 0: NG (no) 1: OK (yes)
V OUT/1
V-DRIVE output self-check. 0: NG (no) 1: OK (yes)
POR/1
Power-on reset. Responds with 0 at first reading after power-on, 1 at second reading. 0: Resister preset 1: Normal
16
2005-08-18
TA1317AFG
Data Transfer Formats via I C Bus
Slave address
A6 1 A5 0 A4 0 A3 0 A2 1 A1 1 A0 0 W/R 0/1
2
Start and Stop Condition
SDA
SCL S Start condition P Stop condition
Bit Transfer
SDA
SCL SDA stable Change of SDA allowed
Acknowledge
SDA by transmitter SDA by receiver
Bit 9: High impedance
Only bit 9: Low impedance 1 S Clock pulse for acknowledge 8 9
SCL from master
17
2005-08-18
TA1317AFG
Data Transmit Format 1
S Slave address 7 bit 0A Sub address 8 bit A Transmit data 9 bit MSB P: Stop condition AP
MSB S: Start condition
MSB A: Acknowledge
Data Transmit Format 2
S Slave address 0A Sub address A Transmit data A A AP
Sub address
Transmit data n
Data Receive Format
S Slave address 7 bit MSB 1A Receive data 8 bit MSB
P
At the moment of the first acknowledge, the master transmitter becomes a receiver and the slave receiver becomes a transmitter. The Stop condition is generated by the master.
Optional Data Transmit Format: Automatic Increment Mode
S Slave address 7 bit MSB 0A1 MSB Sub address 7 bit A Transmit data 1 8 bit MSB Transmit data 2 8 bit MSB AP
In this transmission method, sub-addresses are incremented automatically and data is set from the specified sub-address.
I2C BUS Conditions
Characteristics Low level input voltage High level input voltage Low level output voltage at 3 mA sink current Input current each I/O pin with an input voltage between 0.1 VDD and 0.9 VDD Capacitance for each I/O pin SCL clock frequency Hold time START condition Low period of SCL clock High period of SCL clock Set-up time for a repeated START condition Data hold time Data set-up time Set-up time for STOP condition Bus free time between a STOP and START condition Symbol VIL VIH VOL1 Ii Ci fSCL tHD;STA tLOW tHIGH tSU;STA tHD;DAT tSU;DAT tSU;STO tBUF Min 0 2.7 0 -10 0 4.0 4.7 4.0 4.7 100 250 4.0 4.7 Typ. Max 1.5 Vcc 0.4 10 10 100 Unit V V V A pF kHz s s s s ns ns s s
18
2005-08-18
TA1317AFG
Maximum Ratings (Ta = 25C)
Characteristics Power supply voltage Input pin voltage Power dissipation Power dissipation reduction rate Operating temperature Storage temperature Symbol VCCmax Vin PD (Note 1) 1/ja Topr Tstg Rating 12 GND - 0.3 to Vcc + 0.3 1136 9.1 -20 to 70 -55 to 150 Unit mW mW/C C C
Note 1: See the figure below. Note 2: It is possible that this IC function faultily caused by leak problems according to a field intensity from CRT. Put this IC lay-out position to CRT be far more than 20 cm. If there is not enough distance, intercept it by a shield.
1136
PD (mW) Power dissipation
727
0 0
25
70
150
Ambient temperature
Ta
(C)
Figure 1 PD - Ta Curve
Recommended Operating Conditions
Characteristics Supply voltage (VCC) EHT input voltage FBP input amplitude FBP input frequency FBP input width SCL/SDA pull-up voltage LVP input voltage V input amplitude V input frequency V input width EW PWM input current Pin 8 Pin 3 Pin 15 Pin 15 Pin 15 Pins 16 and Pins 17 Pin 21 Pin 26 Pin 26 Pin 26 Pin 10 Description Min 8.5 0.0 4.0 28 2.5 3.0 0.0 3.0 50 2.5 Typ. 9.0 5.0 Max 9.5 9.0 9.0 45 9.0 9.0 9.0 120 5 Unit V V V kHz s V V V Hz s mA
19
2005-08-18
TA1317AFG
Electrical Characteristics (unless otherwise specified, VCC = 9 V, Ta = 25C) Current dissipation
Pin Name VCC Symbol ICC Test Circuit Min 40 Typ. 50.8 Max 62 Unit mA
Pin voltages
Pin No. 1 6 Pin Name VREF V -DC REF Symbol V1 V6 Test Circuit Min 4.60 4.60 Typ. 4.88 4.88 Max 5.10 5.10 Unit V V
AC Characteristics
Characteristics Vertical trigger input shaped voltage Symbol VTH VTCH Timing pulse output voltage VTCM VTCL Vertical ramp wave amplitude Vertical drive amplification Vertical drive output voltage Vertical NF signal amplitude Vertical phase adjustment 1 (V shift) change amount VRMP GV V5H V5L VNFM VDC (80) VDC (83) VDC VDD (00) Vertical phase adjustment 2 (V centering) change amount VDD (FE) VDD VNFL Vertical amplitude adjustment (picture height) change amount VNFH VNFP VNFN V1 (00) V2 (00) V1 (80) Vertical linearity correction (V linearity) change amount V2 (80) V1 (F8) V2 (F8) VLIN VVT (00) Vertical symmetry (V symmetry) change amount VVT (FF) VVT Test Circuit (Note 11) (Note 10) (Note 9) (Note 8) (Note 7) (Note 3) (Note 4) (Note 5) (Note 6) (Note 2) Test Condition (Note 1) Min 1.2 3.90 2.95 0.97 1.65 21 2.5 0.00 1.65 3.00 5.65 2.30 1.64 2.87 1.30 0.85 2.55 43 -53 0.90 0.69 0.82 0.77 0.73 0.85 9.5 4.60 5.40 0.67 Typ. 1.5 4.10 3.15 1.07 1.75 24 3.3 0.00 1.85 3.55 6.20 2.65 1.82 3.16 1.45 1.00 2.75 48 -48 1.06 0.81 0.96 0.91 0.86 1.00 10.5 4.95 5.70 0.76 Max 1.7 4.30 3.35 1.17 1.85 27 4.1 0.30 2.05 4.10 6.75 3.00 2.00 3.45 1.60 1.15 2.95 53 -43 1.22 0.93 1.10 1.05 0.99 1.15 12.5 5.20 6.00 0.85 V % Vp-p Vp-p V V Vp-p dB V Vp-p V Unit V
%
20
2005-08-18
TA1317AFG
Characteristics Symbol VS (80) VS (BF) VS Vertical integral correction (V correction) change amount V (80) V (8F) V VE (80) Vertical EHT compensation (V EHT compensation) change amount VE (87) VEHT EHT input dynamic range VEHL VEHH VEV (00) Horizontal amplitude adjustment (picture width) change amount VEV (FC) VEV VPB (00) Parabola amplitude adjustment (EW parabola) change amount VPB (20) VPB (3F) VPB VTC (00) EW top corner correction (EW top corner) change amount VTC (F8) VTCP VTCN VBC (00) EW bottom corner correction (EW bottom corner) change amount VBC (F8) VBCP VBCN VM (00) EW corner correction change amount VM (F8) VMP VMN VS (00) EW S correction change amount VS (F8) VSP VSN VET (00) EW trapezium correction change amount VET (FE) VETP VETN VHC (80) Horizontal EHT compensation (H-EHT compensation) DC change amount VHC (87) VHC EHT (1) Parabola amplitude EHT compensation EHT (7) EHT Test Circuit


Test Condition
Min 1.92
Typ. 2.26 1.50 21 1.82 1.90 4.0 1.86 1.69 10.0 2.4 6.4 6.15 1.55 4.60 0.02 2.0 3.3 3.3 2.8 1.2 40
-40
Max 2.60 1.73 25 2.10 2.18 5.2 2.14 1.94 11.5 2.9 6.9 7.10 1.80 5.00 0.06 2.3 3.8 3.8 3.2 1.4 46
-32
Unit Vp-p % Vp-p % Vp-p % V
Vertical S correction (V S correction) change amount
(Note 12)
1.27 17 1.54
(Note 13)
1.62 3.0 1.58
(Note 14)
1.44 8.5
(Note 15)
1.9 5.9 5.20
(Note 16)
1.30 4.20 0.00
V
(Note 17)
1.6 2.8 2.8 2.3
Vp-p
(Note 18)
0.9 32
-46
Vp-p
%
2.4 (Note 19) 0.9 32
-52
2.8 1.2 45
-40
3.2 1.4 55
-35
Vp-p
%
2.4 (Note 20) 0.8 40
-52
2.8 1.1 47
-42
3.2 1.4 57
-32
Vp-p
%
2.2 (Note 21) 1.0 28
-40
2.6 1.4 35
-32
3.0 1.6 40
-27
Vp-p
%
2.4 (Note 22)
-3.0
2.7
-2.7
3.0
-2.4
ms
11.0
-16.0
13.5
-13.5
16.0
-11.0
%
3.0 (Note 23) 4.0 1.0 1.55 (Note 24) 1.65 2.7
3.6 4.7 1.2 1.90 2.00 4.0
4.2 5.4 1.4 2.20 2.30 5.3 Vp-p % V
21
2005-08-18
TA1317AFG
Characteristics Symbol VX (00) AGC operating current VX (40) VX (80) VX (C0) Sawtooth correction (cent saw) maximum amplitude Parabola correction (cent par) maximum amplitude VN (8F) VN (80) VP (F8) VP (08) VHD (80) VHD (88) Horizontal DF amplitude adjustment (H DF amp) VHD (8F) VHDP VHDN THD (08) Horizontal DF phase adjustment (H DF phase) THD (F8) THD THB (00) Horizontal DF bathtub (H DF curve) adjustment THB (F0) THB VVD (80) VVD (88) Vertical DF amplitude adjustment (V DF amp) VVD (8F) VVDP VVDN TVD (08) Vertical DF phase adjustment (V DF phase) LVP detection voltage Vertical guard detection voltage Vertical guard detection output current (BLK-OUT output current) Vertical centering DAC output voltage 1 (V centering) Vertical centering DAC output voltage 2 (V shift) TVD (F8) TVD VLVP VVGH VVGL I24 VCA (00) VCA (FE) VCD (80) VCD (83) VY (00) Vertical centering change amount in V STOP mode Vertical NF signal amplitude at DC coupling Vertical NF center voltage at DC coupling VY (80) VY (FE) VDFB VC Test Circuit

Test Condition
Min 20
Typ. 35 65 340 715 5.0 5.0 2.2 2.2 2.8 3.1 3.4 10
-12 -2.1
Max 50 85 430 895 5.7 5.7 2.5 2.5 3.3 4.0 4.3 13
-7 -0.9
Unit
(Note 25)
45 250 535
A
(Note 26)
4.3 4.3 1.9 1.9 2.1 2.4
Vp-p
(Note 27)
Vp-p
Vp-p
(Note 28)
2.6 7
-15 -2.9
%
(Note 29)
0.9 3.0 15
2.1 4.2 20 15 2.1 2.40 2.70 3.00 10
-10 -2.0
2.9 4.8 25 20 3.1 2.75 3.10 3.45 13
-7 -1.5
s
(Note 30)
10 1.1 2.05 2.30
s
Vp-p
(Note 31)
2.55 7
-15 -2.5
%
(Note 32)
1.5 3.4
2.0 4.0 5.0 7.3 2.4 630 0.50 5.0 0.60 5.0 1.9 2.50 3.0 0.95 2.50
2.5 4.6 5.3 7.6 2.7 750 0.55 5.3 0.80 5.3 2.1 2.75 3.3 1.05 2.75
ms
(Note 33) (Note 34) (Note 35) (Note 36)
4.7 7.0 2.1 450 0.20 4.7 0.20 4.7 1.7
V V
A
V
(Note 37)
V
(Note 38)
2.25 2.7
V
(Note 39) (Note 40)
0.85 2.25
Vp-p V
22
2005-08-18
TA1317AFG
Characteristics Vertical ramp cut level Symbol VCHH VCLH BLHL BLHM Analog blanking phase BLHH BLLL BLLM BLLH VPP (00) Parabola amplitude adjustment (EW parabola) change amount at PWM VPP (20) VPP (3F) VPP Test Circuit

Test Condition (Note 41)
Min 20.0 26.0 5.05 2.30
Typ. 26.0 32.1 5.90 2.70 0.00 6.00 2.40 0.00 0.02 2.00 3.30 3.30
Max 32.0 38.0 6.75 3.10 0.10 6.90 3.00 0.10 0.06 2.30 3.80 3.80
Unit %
(Note 42)
5.10 2.05
ms

0.00 (Note 43) 1.6 2.80 2.80
Vp-p
23
2005-08-18
TA1317AFG
Test Condition
Note No. 1 Parameter SW6 Vertical trigger input shaped voltage OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse (figure below) to pin VIN. (2) Increase vertical trigger pulse level (VT) from 0 VP-P. When timing pulse is output to pin 28 (TC FILTER), measure vertical trigger pulse level VTH.
Vertical cycle = 20 ms
Vertical trigger pulse
Pulse level (VT) 0V 640 s
2
Timing pulse output voltage
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Measure pin 28 (TC FILTER) voltages (VTCH, VTCM, VTCL) as shown in the figure below.
VTCH Pin 28 (TC FILTER) waveform VTCM VTCL
Pin 29 (V-RAMP FILTER) waveform
24
2005-08-18
TA1317AFG
Note No. 3 Parameter SW6 Vertical ramp wave amplitude OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Measure pin 29 (V-RAMP FILTER) amplitude VRMP as shown in the figure below.
Pin 29 (V-RAMP FILTER) waveform
VRMP
4
Vertical drive amplification
OFF
C
ON
OFF
B
ON
A
A
(1) No signal input to pin VIN. (2) Set VD (V-DRIVE mode switch) (sub-address: 00) to AC-Coupling mode (data: 81). (3) Connect external power supply (V7) to TP7 (V fb). (4) Change external power supply (V7) until pin 5 (V DRIVE) voltage is 0.8 V. The voltage is made V7A. (5) Measure pin 5 voltage (V5A) when the external power supply voltage is V7A + 0.2 V. (6) Calculate the drive amplification (GV) using the following formula. Pin 5 (V DRIVE) voltage (V5)
V5H V5A
0.8 V V5L V7A V7A + 0.2 V
Pin 7 (V NF) external supply voltage (V7)
GV = 20 log
V5A - 0.8
0.2
25
2005-08-18
TA1317AFG
Note No. 5 Parameter SW6 Vertical drive output voltage OFF SW7 C SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Measure V5H using the figure for Note 4. (2) Measure V5L using the figure for Note 4. 6 Vertical NF signal amplitude OFF C ON OFF B ON A A (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88). (4) Set V S CORRECTION (sub-address: 09) to center (data: A0). (5) Set V SHIFT (sub-address: 01) data to 82. (6) Measure Pin 7 (V NF) vertical sawtooth amplitude VNFM.
Pin 7 (V NF) waveform
VNFM
26
2005-08-18
TA1317AFG
Note No. 7 Parameter SW6 Vertical phase adjustment 1 (V shift) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88). (4) Set V S CORRECTION (sub-address: 09) to center (data: A0). (5) Set V SHIFT (sub-address: 01) to minimum (data: 80) and measure VDC (80) as shown in the figure below. (6) Set V SHIFT (sub-address: 01) to maximum (data: 83) and measure VDC (83) as shown in the figure below. (7) Calculate change amount VDC using the following formula.
Pin 7 (V NF) waveform
VDC (83) VDC (80)
10 ms VDC = VDC (83) - VDC (80)
10 ms
27
2005-08-18
TA1317AFG
Note No. 8 Parameter SW6 Vertical phase adjustment 2 (V centering) change amount ON SW7 A SW8 OFF Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88). (4) Set V S CORRECTION (sub-address: 09) to center (data: A0). (5) Set V CENTERING (sub-address: 05) to minimum (data: 00) and measure VDD (00) as shown in the figure below. (6) Set V CENTERING (sub-address: 05) to maximum (data: FE) and measure VDD (FE) as shown in the figure below. (7) Calculate change amount VDD using the following formula.
Pin 7 (V NF) waveform
VDD (FE) VDD (00)
10 ms VDD = VDD (FE) - VDD (00)
10 ms
28
2005-08-18
TA1317AFG
Note No. 9 Parameter SW6 Vertical amplitude adjustment (picture height) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88). (4) Set V S CORRECTION (sub-address: 09) to center (data: A0). (5) Set V SHIFT (sub-address: 01) data to 82. (6) Set PICTURE HEIGHT (sub-address: 00) to minimum (data: 01) and measure Pin 7 (V NF) amplitude (VNFL). (7) Set PICTURE HEIGHT (sub-address: 00) to maximum (data: FF) and measure Pin 7 (V NF) amplitude (VNFH). (8) Determine variable ranges (VNFP, VNFN) using the following formulas.
Pin 7 (V NF) waveform
VNFP =
VNFH - VNFM VNFM
VNFH
VNFL
x 100,
VNFN =
VNFL - VNFM VNFM
x 100
29
2005-08-18
TA1317AFG
Note No. 10 Parameter SW6 Vertical linearity correction (V linearity) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88). (4) Set V S CORRECTION (sub-address: 09) to center (data: A0). (5) Set V SHIFT (sub-address: 01) data to 82. (6) Set V LINEARITY (sub-address: 02) to minimum (data: 00) and measure V1 (00) and V2 (00) as shown in the figure below. (7) Set V LINEARITY (sub-address: 02) to center (data: 80) and measure V1 (80) and V2 (80) as shown in the figure below. (8) Set V LINEARITY (sub-address: 02) to maximum (data: F8) and measure V1 (F8) and V2 (F8) as shown in the figure below. (9) Calculate maximum correction VLIN from measured result using the following formula.
Pin 7 (V NF) waveform
V2 (**) V1 (**)
10 ms V1 (00) - V1 (F8) + V2 (F8) - V2 (00) 2 x [V1 (80) + V2 (80)]
10 ms
VLIN =
x 100
30
2005-08-18
TA1317AFG
Note No. 11 Parameter SW6 Vertical symmetry (V symmetry) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88). (4) Set V S CORRECTION (sub-address: 09) to center (data: A0). (5) Set V SHIFT (sub-address: 01) data to 82. (6) Set V SYMMETRY (sub-address: 11) to minimum (data: 00) and measure Pin 7 (V NF) voltage VVT (00). (7) Set V SYMMETRY (sub-address: 11) to maximum (data: FF) and measure Pin 7 (V NF) voltage VVT (FF). (8) Calculate change amount VVT using the following formula.
Pin 7 (V NF) waveform
VVT (FF) VVT (00)
10 ms VVT = VVT (FF) - VVT (00)
10 ms
31
2005-08-18
TA1317AFG
Note No. 12 Parameter SW6 Vertical S correction (V S correction) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 88). (4) Set V SHIFT (sub-address: 01) to 82. (5) Set V S CORRECTION (sub-address: 09) to minimum (data: 80) and measure VS (80) as shown in the figure below. (6) Set V S CORRECTION (sub-address: 09) to maximum (data: BF) and measure VS (BF) as shown in the figure below. (7) Calculate maximum correction VS using measured result and the following formula.
Pin 7 (V NF) waveform
VS =
VS (80) - VS (8F) VS (80) + VS (8F)
VS (BF) x 100
VS (80)
32
2005-08-18
TA1317AFG
Note No. 13 Parameter SW6 Vertical integral correction (V correction) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V S CORRECTION (sub-address: 09) to center (data: A0). (4) Set V SHIFT (sub-address: 01) to 82. (5) Set V INTEGRAL CORRECTION (sub-address: 08) to minimum (data: 80) and measure V (80) as shown in the figure below. (6) Set V INTEGRAL CORRECTION (sub-address: 08) to maximum (data: 8F) and measure V (8F) as shown in the figure below. (7) Calculate maximum correction V from measured result using the following formula.
Pin 7 (V NF) waveform V (8F) V (80)
V =
V (8F) - V (80) V (80)
x 100
33
2005-08-18
TA1317AFG
Note No. 14 Parameter SW6 Vertical EHT compensation (V EHT compensation) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V SHIFT (sub-address: 01) data to 82. (4) Connect external power supply (DC voltage = 0 V) to pin 3 (EHT IN). (5) Set V-EHT COMPENSATION (sub-address: 02) to minimum (data: 80) and measure Pin 7 (V NF) amplitude VE (80). (6) Set V-EHT COMPENSATION (sub-address: 02) to maximum (data: 87) and measure Pin 7 (V NF) amplitude VE (87). (7) Calculate change amount VEHT using the following formula. VEHT = 15 EHT input dynamic range OFF B ON OFF B ON A A VE (80) - VE (87) VE (87)
x 100
(1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Set V SHIFT (sub-address: 01) data to 82. (4) Connect external power supply V3 to pin 3 (EHT IN). (5) Set V-EHT COMPENSATION (sub-address: 02) to maximum (data: 87). (6) Change external power supply V3 from 1 to 7 V and monitor Pin 7 (V NF) amplitude. (7) When Pin 7 (V NF) amplitude changes, measure V3 voltages VEHL and VEHH.
Pin 7 (V NF) amplitude
VEHL
VEHH
Voltage applied to pin 3 (EHT IN) (V3)
34
2005-08-18
TA1317AFG
Note No. 16 Parameter SW6 Horizontal amplitude adjustment (picture width) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set EW PARABOLA (sub-address: 0A) to minimum (data: 00). (3) Set PICTURE WIDTH to maximum ( (sub-address: 01, data: FC) and (sub-address: 0C, data: 81) ) and measure Pin 10 (EW FD) voltage VEV (FC). (4) Set PICTURE WIDTH to minimum ( (sub-address: 01, data: 00) and (sub-address: 0C, data: 80) ) and measure Pin 13 (EW FD) voltage VEV (00). (5) Calculate change amount VEV using the following formula. VEV = VEV (FC) - VEV (00) 17 Parabola amplitude adjustment (EW parabola) change amount OFF B ON OFF B ON A A (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set PICTURE WIDTH (sub-address: 01) to maximum (data: FC). (3) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN). (4) Set EW PARABOLA (sub-address: 0A) to minimum (data: 00) and measure Pin 13 (EW FD) amplitude VPB (00). (5) Set EW PARABOLA (sub-address: 0A) to center (data: 20) and measure Pin 13 (EW FD) amplitude VPB (20). (6) Set EW PARABOLA (sub-address: 0A) to maximum (data: 3F) and measure Pin 13 (EW FD) amplitude VPB (3F). (7) Calculate change amount VPB using the following formula.
VPB (3F)
VPB (00)
Pin 13 (EW FD) waveform VPB = VPB (3F) - VPB (00)
35
2005-08-18
TA1317AFG
Note No. 18 Parameter SW6 EW top corner correction (EW top corner) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN). (3) Set EW PARABOLA (sub-address: 0A) to center (data: 20). (4) Set EW TOP CORNER (sub-address: 0C) to minimum (data: 00) and measure Pin 13 (EW FD) amplitude VTC (00). (5) Set EW TOP CORNER (sub-address: 0C) to maximum (data: F8) and measure Pin 13 (EW FD) amplitude VTC (F8). (6) Calculate change amounts VTCP and VTCN using the following formulas.
VTC (00)
VTC (F8)
VTC(00) VTC(F8)
Pin 13 (EW FD) waveform VTC (00) - VPB (20) VPB (20) VTC (F8) - VPB (20) VPB (20)
VTCP =
x 100
VTCN =
x 100
36
2005-08-18
TA1317AFG
Note No. 19 Parameter SW6 EW bottom corner correction (EW bottom corner) change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN). (3) Set EW PARABOLA (sub-address: 0A) to center (data: 20). (4) Set EW BTM CORNER (sub-address: 0D) to minimum (data: 00) and measure Pin 13 (EW FD) amplitude VBC (00). (5) Set EW BTM CORNER (sub-address: 0D) to maximum (data: F8) and measure Pin 13 (EW FD) amplitude VBC (F8). (6) Calculate change amounts VBCP and VBCN using the following formulas.
VBC (00)
VBC (F8)
VTC(00) VTC(F8)
Pin 13 (EW FD) waveform VBC (00) - VPB (20) VPB (20) VBC (F8) - VPB (20) VPB (20)
VBCP =
x 100
VBCN =
x 100
37
2005-08-18
TA1317AFG
Note No. 20 Parameter SW6 EW corner correction change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN). (3) Set EW PARABOLA (sub-address: 0A) to center (data: 20). (4) Set EW CORNER (sub-address: 0F) to minimum (data: 00) and measure Pin 13 (EW FD) amplitude VM (00). (5) Set EW CORNER (sub-address: 0F) to maximum (data: F8) and measure Pin 13 (EW FD) amplitude VM (F8). (6) Calculate change amounts VMP and VMN using the following formulas.
VM (00)
VM (F8)
Pin 13 (EW FD) waveform VM (00) - VPB (20) VPB (20) VM (F8) - VPB (20) VPB (20)
VMP =
x 100
VMN =
x 100
38
2005-08-18
TA1317AFG
Note No. 21 Parameter SW6 EW S correction change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN). (3) Set EW PARABOLA (sub-address: 0A) to center (data: 20). (4) Set S CORRECTION (sub-address: 0E) to minimum (data: 00) and measure Pin 13 (EW FD) amplitude VS (00). (5) Set S CORRECTION (sub-address: 0E) to maximum (data: F8) and measure Pin 13 (EW FD) amplitude VS (F8). (6) Calculate change amounts VSP and VSN using the following formulas.
VS (00)
VS (F8)
Pin 13 (EW FD) waveform VS (00) - VPB (20) VPB (20) VS (F8) - VPB (20) VPB (20)
VSP =
x 100
VSN =
x 100
39
2005-08-18
TA1317AFG
Note No. 22 Parameter SW6 EW trapezium correction change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN). (3) Set EW PARABOLA (sub-address: 0A) to maximum (data: 3F). (4) Set EW TRAPEZIUM (sub-address: 0B) to minimum (data: 00) and measure Pin 13 (EW FD) phase VET (00). (5) Set EW TRAPEZIUM (sub-address: 0B) to maximum (data: FE) and measure Pin 13 (EW FD) phase VET (FE). (6) Calculate change amounts VETP and VETN using the following formulas.
VET (FE)
VET (00)
Pin 13 (EW FD) waveform
VETP =
VET (FE) 20
x 100
VETN =
VET (00) 20
x 100
40
2005-08-18
TA1317AFG
Note No. 23 Parameter SW6 Horizontal EHT compensation (H-EHT compensation) DC change amount OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Apply external power supply (DC voltage = 1 V) to pin 3 (EHT IN). (3) Set H-EHT COMPENSATION (sub-address: 03) to minimum (data: 80) and measure Pin 13 (EW FD) amplitude VHC (80). (4) Set H-EHT COMPENSATION (sub-address: 03) to maximum (data: 87) and measure Pin 13 (EW FD) amplitude VHC (87). (5) Calculate change amount VHC using the following formula.
VHC (87) VHC (80) Pin 13 (EW FD) waveform VHC = VHC (87) - VHC (80)
41
2005-08-18
TA1317AFG
Note No. 24 Parameter SW6 Parabola amplitude EHT compensation OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Apply external power supply V3 to pin 3 (EHT IN). (3) Set EW PARABOLA (sub-address: 0A) to center (data: 20). (4) Set external power supply V3 to 7 V and measure Pin 13 (EW FD) amplitude EHT (7). (5) Set external power supply V3 to 1 V and measure Pin 13 (EW FD) amplitude EHT (1). (6) Calculate change amount EHT using the following formula. EHT = 25 AGC operating current OFF B ON OFF B ON A B EHT (7) - EHT (1) EHT (7) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) When V AGC (sub-address: 09) is switched, set data to 00, 40, 80, and C0 and measure the following. (3) Connect GND through 200 to pin 30 (AGC FILTER). (4) Monitor pin 30 (AGC FILTER) and measure pulse levels VX (00), VX (40), VX (80), and VX (C0) as shown in the figure below. (5) Calculate output currents (IX (00), IX (40), IX (80), IX (C0) using the following formula.
x 100
VX
Pin 30 (AGC FILTER) waveform
IX (**) =
VX (**) 200
42
2005-08-18
TA1317AFG
Note No. 26 Parameter SW6 Sawtooth correction (cent saw) maximum amplitude OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set CENTER SAW (sub-address: 10) to maximum (data: 8F) and measure pin 23 (CENT OUT) amplitude VN (8F). (3) Set CENTER SAW (sub-address: 10) to minimum (data: 80) and measure pin 23 (CENT OUT) amplitude VN (80).
VN (80) Pin 23 (CENT OUT) waveform
VN (8F) Pin 23 (CENT OUT) waveform
27
Parabola correction (cent par) maximum amplitude
OFF
B
ON
OFF
B
ON
A
A
(1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set CENTER PARABOLA (sub-address: 10) to maximum (data: F8) and measure pin 23 (CENT OUT) amplitude VP (F8). (3) Set CENTER PARABOLA (sub-address: 10) to minimum (data: 08) and measure pin 23 (CENT OUT) amplitude VP (08).
VP (08)
VP (F8)
Pin 23 (CENT OUT) waveform
Pin 23 (CENT OUT) waveform
43
2005-08-18
TA1317AFG
Note No. 28 Parameter SW6 Horizontal DF amplitude adjustment (H DF amp) OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input horizontal trigger pulse (figure below) to pin 15 (FBP IN). Pulse level (HT) = 4.0 V
3 s
Pulse level (HT) H cycle = 30 s
(2) Set H-DF CURVE (sub-address: 08) to maximum (data: F0). (3) Set H-DF AMPLITUDE (sub-address: 07) to minimum (data: 80) and measure pin 20 (H-DF OUT) amplitude VHD (80). (4) Set H-DF AMPLITUDE (sub-address: 07) to center (data: 88) and measure pin 20 (H-DF OUT) amplitude VHD (88). (5) Set H-DF AMPLITUDE (sub-address: 07) to maximum (data: 8F) and measure pin 20 (H-DF OUT) amplitude VHD (8F). (6) Calculate change amounts VHDP and VHDN using the following formulas.
VHD (8F)
VHD (80)
Pin 20 (H-DF OUT) waveform VHD (8F) - VHD (88) VHD (88) VHD (80) - VHD (88) VHD (88)
x 100
VHDP = VHDN =
x 100
44
2005-08-18
TA1317AFG
Note No. 29 Parameter SW6 Horizontal DF phase adjustment (H DF phase) OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input horizontal trigger pulse (figure below) to pin 15 (FBP IN). Pulse level (HT) = 4.0 V (2) Set H-DF CURVE (sub-address: 08) to maximum (data: F0). (3) Set H-DF PHASE (sub-address: 07) to minimum (data: 08) and measure pin 20 (H-DF OUT) phase THD (08). (4) Set H-DF PHASE (sub-address: 07) to maximum (data: F8) and measure pin 20 (H-DF OUT) phase THD (F8). (5) Calculate change amount THD using the following formula.
THD (08) THD (F8) Pin 20 (H-DF OUT)waveform THD = THD (08) + THD (F8)
45
2005-08-18
TA1317AFG
Note No. 30 Parameter SW6 Horizontal DF bathtub (H DF curve) adjustment OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input horizontal trigger pulse (figure below) to pin 15 (FBP IN). Pulse level (HT) = 4.0 V (2) Set H-DF AMPLITUDE (sub-address: 07) to maximum (data: 8F). (3) Set H-DF CURVE (sub-address: 08) to minimum (data: 00) and measure pin 20 (H-DF OUT) phase THB (00). (4) Set H-DF CURVE (sub-address: 08) to maximum (data: F0) and measure pin 20 (H-DF OUT) phase THB (F0). (5) Calculate change amount THB using the following formula.
1V
THB (F0) THB (00)
Pin 20 (H-DF OUT) waveform THB (00) - THB (F0) 2
THB =
46
2005-08-18
TA1317AFG
Note No. 31 Parameter SW6 Vertical DF amplitude adjustment (V DF amp) OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set V-DF AMPLITUDE (sub-address: 06) to minimum (data: 80) and measure pin 22 (V-DF OUT) amplitude VVD (80). (3) Set V-DF AMPLITUDE (sub-address: 06) to center (data: 88) and measure pin 22 (V-DF OUT) amplitude VVD (88). (4) Set V-DF AMPLITUDE (sub-address: 06) to maximum (data: 8F) and measure pin 22 (V-DF OUT) amplitude VVD (8F). (5) Calculate change amounts VVDP and VVDN using the following formulas.
VVD (8F)
VVD (80)
Pin 22 (V-DF OUT) waveform VVD (80) - VVD (88) VVD (88) VVD (8F) - VVD (88) VVD (88)
VVDP =
x 100
VVDN =
x 100
47
2005-08-18
TA1317AFG
Note No. 32 Parameter SW6 Vertical DF phase adjustment (V DF phase) OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set V-DF PHASE (sub-address: 06) to minimum (data: 08) and measure pin 22 (V-DF OUT) phase TVD (08). (3) Set V-DF PHASE (sub-address: 06) to maximum (data: F8) and measure pin 22 (V-DF OUT) phase TVD (F8). (4) Calculate change amount TVD using the following formula. TVD = TVD (08) + TVD (F8) 33 LVP detection voltage OFF B ON OFF B ON B A (1) Connect external supply voltage V8 to TP21 (LVP). (2) Decrease external supply voltage V8 from 9 V. When D5 data in Read mode changes from 0 to 1, measure TP21 voltage VLVP. 34 Vertical guard detection voltage OFF C ON OFF B ON A A (1) Connect external supply voltage V7 to TP7 (V NF). (2) Switch to VD (sub-address: 00) to AC-Coupling mode (data: 81). (3) Increase external supply voltage V7 from 5.5 V. When D3 data in Read mode changes from 0 to 1, measure TP7 voltage VVGH. (4) Decrease external supply voltage V7 from 5.5 V. When D3 data in Read mode changes from 0 to 1, measure TP7 voltage VVGL. 35 Vertical guard detection output current (BLK-OUT output current) OFF C ON OFF B ON A A (1) Connect external supply voltage V7 = 8 V to TP7 (V NF). (2) Measure pin 24 (BLK OUT) voltage V24 and calculate output current (I24) using the following formula. I24 = 36 Vertical centering DAC output voltage 1 (V centering) OFF B ON OFF B ON A A V24 10 k
(1) Set VD (sub-address: 00) to AC-Coupling mode (data: 81). (2) Set V CENTERING (sub-address: 05) to minimum (data: 00) and measure pin 2 (CENTER DAC) voltage VCA (00). (3) Set V CENTERING (sub-address: 05) to maximum (data: FE) and measure pin 2 (CENTER DAC) voltage VCA (FE).
37
Vertical centering DAC output voltage 2 (V shift)
OFF
A
OFF
OFF
B
ON
A
A
(1) Set VD (sub-address: 00) to DC-Coupling mode (data: 80). (2) Set V SHIFT (sub-address: 01) to minimum (data: 80) and measure pin 2 (CENTER DAC) voltage VCD (80). (3) Set V SHIFT (sub-address: 01) to maximum (data: 83) and measure pin 2 (CENTER DAC) voltage VCD (83).
48
2005-08-18
TA1317AFG
Note No. 38 Parameter SW6 Vertical centering change amount in V STOP mode ON SW7 A SW8 OFF Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Set VD (sub-address: 00) to DC-Coupling mode (data: 80). (2) Set to V STOP (sub-address: 0B, data: 81). (3) Set V CENTERING (sub-address: 05) to minimum (data: 00) and measure Pin 7 (V NF) voltage VY (00). (4) Set V CENTERING (sub-address: 05) to center (data: 80) and measure Pin 7 (V NF) voltage VY (80). (5) Set V CENTERING (sub-address: 05) to minimum (data: FE) and measure Pin 7 (V NF) voltage VY (FE). 39 Vertical NF signal amplitude at DC coupling ON A OFF OFF B ON A A (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80). (3) Measure vertical Pin 7 (V NF) sawtooth width VDFB.
Pin 7 (V NF) waveform
VDFB
49
2005-08-18
TA1317AFG
Note No. 40 Parameter SW6 Vertical NF center voltage at DC coupling ON SW7 A SW8 OFF Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80). (3) Measure center voltage VC as shown in the figure below.
Pin 7 V (V NF) waveform C
10 ms
10 ms
50
2005-08-18
TA1317AFG
Note No. 41 Parameter SW6 Vertical ramp cut level ON SW7 A SW8 OFF Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 8F). (4) Set V S CORRECTION (sub-address: 09) to center (data: A0).
Pin 7 (V NF) waveform
VB
VT
10 ms
10 ms
(5) Measure amplitudes VT and VB as shown in the figure below. (6) Set V-RAMP to maximum and measure amplitudes VTH and VBH. Sub-address 04 data: 87 Sub-address 05 data: 81
(7) Calculate cut levels using the following formulas. Pin 7 V - VTH (V NF) waveform T x 100 VCHH = VT VCLH = VB - VBH VB
VBL VBH
VTH
x 100 10 ms
10 ms
51
2005-08-18
TA1317AFG
Note No. 42 Parameter SW6 Analog blanking phase ON SW7 A SW8 OFF Test Condition SW Mode SW10 SW13 OFF B SW14 ON SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V, 60Hz (2) Set VD (sub-address: 00) to DC-Coupling mode (data: 80). (3) Set V INTEGRAL CORRECTION (sub-address: 08) to center (data: 8F). (4) Set V S CORRECTION (sub-address: 09) to center (data: A0). (5) AS shown in the figure below, measure analog blanking phase in relation to pin 26 (VIN) under the following conditions. (6) Set ANALOG V-BLK STOP PHASE (sub-address: 03) to minimum (data: 00) and measure blanking phase BLHL. (7) Set ANALOG V-BLK STOP PHASE (sub-address: 03) to center (data: 80) and measure blanking phase BLHM. (8) Set ANALOG V-BLK STOP PHASE (sub-address: 03) to maximum (data: F8) and measure blanking phase BLHH. (9) Set ANALOG V-BLK START PHASE (sub-address: 04) to minimum (data: 00) and measure blanking phase BLLL. (10) Set ANALOG V-BLK START PHASE (sub-address: 04) to center (data: 80) and measure blanking phase BLLM. (11) Set ANALOG V-BLK START PHASE (sub-address: 04) to maximum (data: F8) and measure blanking phase BLLH.
Vertical trigger pulse
Pin 24 (BLK OUT)
BLLL BLHL BLLM BLHM BLLH BLHH
52
2005-08-18
TA1317AFG
Note No. 43 Parameter SW6 Parabola amplitude adjustment (EW parabola) change amount at PWM OFF SW7 B SW8 ON Test Condition SW Mode SW10 SW13 ON A SW14 OFF SW21 A SW30 A Test Method (unless otherwise specified, VCC = 9 V, Ta = 25 3C, data = preset values) (1) Input vertical trigger pulse to pin VIN. Pulse level (VT) = 3.0 V (2) Set PICTURE WIDTH (sub-address: 01) to maximum (data: 8C). (3) Apply external power supply (DC voltage = 7 V) to pin 3 (EHT IN). (4) Set EW PARABOLA (sub-address: 0A) to minimum (data: 00) and measure Pin 13 (EW FD) amplitude VPP (00). (5) Set EW PARABOLA (sub-address: 0A) to center (data: 20) and measure Pin 13 (EW FD) amplitude VPP (20). (6) Set EW PARABOLA (sub-address: 0A) to maximum (data: 3F) and measure Pin 13 (EW FD) amplitude VPP (3F). (7) Calculate change amount VPP using the following formula.
VPP (3F)
VPP (00)
Pin 13 (EW FD) waveform VPP = VPP (3F) - VPP (00)
53
2005-08-18
Test Circuit
VCC 470 LED
SW30 A 30 1 F
M
1 30 1 B 29 2 29 2 28 3 28 3 27 4 NC NC EHT IN TC FILTER CENTER DAC V-RAMP FILTER R30 1 F R28 0. 1 F M 5 5 V DRIVE C5 6 3.6 k 6 R6b 7 AB 7 V NF R6a V-DC REF SW6 10 k 1 k R5 26 26 VIN 25 NC 24 24 BLK OUT VREF AGC FILTER C30 200 C28 20 k 10 k R24 23 23 CENTER OUT
M
C29 M 0.02 F
Vin
Q7 SW8 SW7 C TP7 8 8 220 F C8A 9 NC SW10 10 10 VCC EW PWM 11 11 1 k R7a 0.01 F C8B
TA1317AFG ANALOG GND
22
22 V-DF OUT 21 LVP IN 20 H-DF OUT
VCC
A 21 SW21 B 20
47 k R21
TP21
2.4 k
12
19 NC NC A 13 13
54
R10f 1 F C10 1 k R13 Q13
M
18
18
EW FD SW13 B 14 14 15 15
DIGITAL GND
17
17
SCL
EW FILTER
SCL
470 R17a 16 16 FBP IN
SDA
SDA 0.1 F C14 SW14 Hin SW15
470 R16a
M Mylar capacitor
16
1
CTC7 RTC13 15 2 RTC14 5.1 k 50 k 1200 pF CTC8 RTC16 RTC15 14 3 50 k 7.5 k 13 4 RTC17 51 k CTC9 5 Pin 10 F RTC18 51 k 6 12 TC4538BP 11 10 7
1000 pF
TA1317AFG
8
9
2005-08-18
F.B.T. 0.01 F 1 VREF AGC FILTER +B 2 CENTER DAC 130 k EHT IN TC FILTER 0.02 F M 28 20 k 27 4 NC NC 3 1 F 30 29
M
1 F
2.2 M 330 k
V-RAMP FILTER
M
Application Circuit 1 (V-AC coupling/EW parabola output)
+21 V 390 k 270 k
M 0.047 F
26
5 6
V DRIVE
VIN
220 F 8 +9 V
M 0.01 F
TA8427K 7 9 10 V NF VCC NC 33 k 11
25
V-DC REF
NC
24 BLK OUT 23 CENTER OUT
TA1317AFG
22 V-DF OUT 21
+200 V
EW PWM
LVP IN
400 k 18 k
10 k 20 ANALOG GND H-DF OUT
55
7.5 k -27 V
M 0.1 F
12 13
19
NC
NC
18
27 k 1.2 k
EW FD +27 V
DIGITAL GND
14 15
17
EW FILTER
SCL
16
FBP IN
SDA
M Mylar capacitor
H-OUT
TA1317AFG
2005-08-18
F.B.T. 0.01 F 30 1 VREF AGC FILTER +B 29 2 CENTER DAC V-RAMP FILTER 130 k EHT IN TC FILTER 0.02 F M 28 20 k 27 4 NC NC 3 1 F
M
2.2 M 330 k
1 F
M
Application Circuit 2 (V-DC coupling/EW PWM output)
+21 V 390 k 270 k
M 0.047 F
5
-B V DRIVE
26 VIN
H ramp (Internal signal) FBP (Pin 15) 1 k 10 k 6 0.056 F 7 TA8427K V-DC REF DY V NF 10 k 220 F 8 VCC +9 V 0.01 F 9 10 11 NC TA1317AFG EW PWM EW parabola (Pin 14) H ramp ANALOG GND EW PWM (Pin 10)
25 NC 24 BLK OUT 23 CENTER OUT 22 V-DF OUT 21 LVP IN 10 k 20 H-DF OUT +200 V 400 k 18 k
56
H-OUT
12 13
19 NC NC 18 DIGITAL GND EW FD 3900 pF 1200 pF 10 k 15 16 FBP IN SDA
14
17 SCL EW FILTER
G +25 V
M Mylar capacitor
S
D
TA1317AFG
2005-08-18
TA1317AFG
Package Dimensions
Weight: 0.63 g (typ.)
57
2005-08-18
TA1317AFG
58
2005-08-18


▲Up To Search▲   

 
Price & Availability of TA1317AFG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X